Graph the following functions, without a graphing calculator, and label the given items.

1. \(y = \sqrt{x - 2} + 3 \)
 D:
 R:
 Starting Point:
 Translation:
 End Behavior:

2. \(y = -\sqrt{x + 1} - 4 \)
 D:
 R:
 Starting Point:
 Translation:
 End Behavior:

3. \(y = \frac{3}{2}x + 2 - 5 \)
 D:
 R:
 Turning Point:
 Translation:
 End Behavior:

4. \(y = -\frac{3}{2}x - 5 + 2 \)
 D:
 R:
 Turning Point:
 Translation:
 End Behavior:

For questions 5-6, write the equation of the translated function.

5.

6.

5.

6.

7. Describe what each part of the translated function \(f(x) = a\sqrt{x-h} + k \) does to the parent function \(f(x) = \sqrt{x} \).

Solve the following radical equations. Be sure to check your solutions.

8. \(\sqrt{2x-7} = x-5 \)

8. ______________________

9. \(\sqrt{2x+3} = \sqrt{x+1} + 1 \)

9. ______________________

10. When solving the equation \(x + 3 = \sqrt{-3x-5} \), you get \(x = -7 \) and \(x = -2 \). Determine which is the extraneous solution and explain why.

11. Find the solutions to the system.

\[\frac{1}{3}x + 7 = \sqrt[3]{x + 4} + 5 \]

11. ______________________
12. A particular jeweler uses the formula \(d = \frac{\sqrt[3]{4w}}{0.02847} \) to relate the average diameter \((d) \) of a cultured pearl in millimeters to its weight \((w) \) in carats. The jeweler sells the pearls to customers for $3.50 per carat. How much would a cultured pearl with a 7.1 mm average diameter cost?

13. Let \(f(x) = 16x^5 \) and \(g(x) = \frac{4}{x} \). Find \(g(f(x)) \).

 a. \(g(f(x)) = \frac{5\sqrt{x}}{4x} \)
 b. \(g(f(x)) = \frac{16\cdot\sqrt[5]{16x}}{x} \)
 c. \(g(f(x)) = \frac{\sqrt[5]{16x}}{4x} \)
 d. \(g(f(x)) = \frac{64\cdot\sqrt[5]{x^2}}{x} \)

14. Determine whether \(f(x) = x - 3 \) and \(g(x) = -x + 3 \) are inverse functions.

 a. \(f(x) \) and \(g(x) \) are inverse functions because \(f(x) - g(x) = 0 \)
 b. \(f(x) \) and \(g(x) \) are inverse functions because \(f(g(x)) = x \)
 c. \(f(x) \) and \(g(x) \) are not inverse functions because \(f(g(x)) \) does not equal \(x \)
 d. \(f(x) \) and \(g(x) \) are inverse functions because \(f(g(x)) = -x \)

15. Solve: \(1.25^{2x+1} = \left(\frac{125}{64} \right)^{-x-3} \)
Answer Key

1. \[y = \sqrt{x - 2} + 3 \]
 D: \(x \geq 2 \)
 R: \(y \geq 3 \)
 Starting Point: (2,3)
 Translation: 2R, 3U
 End Behavior:
 \[x \to +\infty \Rightarrow f(x) \to +\infty \]
 \[x \to 2 \Rightarrow f(x) \to 3 \]

2. \[y = -\sqrt{x + 4} - 1 \]
 D: \(x \geq -1 \)
 R: \(y \leq -4 \)
 SP: (-1,-4)
 Trans: 1L, 4D
 End Behavior:
 \[x \to -1 \Rightarrow f(x) \to -4 \]
 \[x \to +\infty \Rightarrow f(x) \to -\infty \]

3. \[y = \sqrt[3]{x + 2} - 5 \]
 D: All Real #'s
 R: All Real #'s
 Turning Point: (-2,-5)
 Translation: 2L, 5D
 End Behavior:
 \[x \to -\infty \Rightarrow f(x) \to -\infty \]
 \[x \to +\infty \Rightarrow f(x) \to +\infty \]

4. \[y = -\sqrt[3]{x - 5} + 2 \]
 D: All Real #'s
 R: All Real #'s
 Turning Point: (5,2)
 Trans: 5R, 2U
 End Behavior:
 \[x \to -\infty \Rightarrow f(x) \to +\infty \]
 \[x \to +\infty \Rightarrow f(x) \to -\infty \]

5. \[f(x) = -\sqrt{x + 6} - 1 \]
6. \[f(x) = \sqrt[3]{x + 6} + 1 \]
7. If \(a \) is > 1 there is a vertical stretch. If 0<\(a <1 \) there is a vertical compression. If \(a \) is negative then the graph is reflected. \(h \) moves the graph right or left (don’t forget to change the sign). \(k \) moves the graph up or down.
8. 8
9. 3,-1
10. \(x = -7 \) is extraneous because square roots cannot equal a negative number
11.
 (-3, 6)

12. $8.92
13. A
14. C
15. -2